Elastic moduli of multiblock copolymers in the lamellar phase.
نویسندگان
چکیده
We study the linear elastic response of multiblock copolymer melts in the lamellar phase, where the molecules are composed of tethered symmetric AB diblock copolymers. We use a self-consistent field theory method, and introduce a real space approach to calculate the tensile and shear moduli as a function of block number. The former is found to be in qualitative agreement with experiment. We find that the increase in bridging fraction with block number, that follows the increase in modulus, is not responsible for the increase in modulus. It is demonstrated that the change in modulus is due to an increase in mixing of repulsive A and B monomers. Under extension, this increase originates from a widening of the interface, and more molecules pulled free of the interface. Under compression, only the second of these two processes acts to increase the modulus.
منابع مشابه
Lamellar-in-lamellar structure of binary linear multiblock copolymers.
A theoretical description of the lamellar-in-lamellar self-assembly of binary A-b-(B-b-A)(m)-b-B-b-A multiblock copolymers in the strong segregation limit is presented. The essential difference between this binary multiblock system and the previously considered C-b-(B-b-A)(m)-b-B-b-C ternary multiblock copolymer system is discussed. Considering the situation with long end blocks, the free energ...
متن کاملViscoelastic Properties and Shock Response of Coarse-Grained Models of Multiblock versus Diblock Copolymers: Insights into Dissipative Properties of Polyurea
We compare and contrast the microstructure, viscoelastic properties, and shock response of coarse-grained models of multiblock copolymer and diblock copolymers using molecular dynamics simulations. This study is motivated by the excellent dissipative and shock-mitigating properties of polyurea, speculated to arise from its multiblock chain architecture. Our microstructural analyses reveal that ...
متن کاملNature of Viscoelasticity in Lamellar Block Copolymers: Contraction Correlated to Strain Localization
We determined the local strain profile in sheared lamellar block copolymers. A trilayer model, based on elastic brushes separated by viscous interpenetration zones, captures the rheological response of these materials and provides a measure of the relative contributions of elastic versus viscous strain. The elastic chain distortions were evident from a reversible lamellar contraction, as measur...
متن کاملMolecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes
Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...
متن کاملPhase behavior of symmetric linear multiblock copolymers
Molecular-dynamics simulations are used to study the phase behavior of a single linear multiblock copolymer with blocks of Aand B-type monomers under poor solvent conditions, varying the block length N , number of blocks n, and the solvent quality (by variation of the temperature T ). The fraction f of A-type monomers is kept constant and equal to 0.5, and always the lengths of A and B blocks a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 120 8 شماره
صفحات -
تاریخ انتشار 2004